

Swing Clamps with Sturdy Swing Mechanism Cartridge type, position monitoring optional, double acting, max. operating pressure 350 bar

Advantages

- 4 sizes available
- Short version without bottom cover
- Minimum flange dimensions
- High clamping force at low pressures
- Sturdy swing mechanism
- Insensitive against high flow rates
- Indexing of the clamping arm in a specified position is possible
- Special swing angle easily realizable
- Standard FKM wiper
- Metallic wiper optional
- Mounting position: any

Application

Hydraulic swing clamps are used for clamping of workpieces, when it is essential to keep the clamping area free of straps and clamping components for unrestricted workpiece loading and unloading.

Due to the sturdy swing mechanism these swing clamps are particularly suited for:

- Automatic manufacturing systems
- Clamping fixtures with workpiece loading via handling systems
- Transfer lines
- Test systems for motors,
- gears and axes
- Assembly lines
- Special machine tools

Description

The hydraulic swing clamp is a pull-type cylinder where a part of the total stroke is used to swing the piston.

The favourable area ratio (piston/piston rod) allows high clamping forces already at relatively low oil pressures.

For high flow rates the swing speed is limited by an orifice in the clamping port. Thus, uniform clamping of several swing clamps is also possible when oil supply is effected through a common bore.

Due to the sturdy swing mechanism the angle position of the clamping arm remains the same after a slight collision with the workpiece during loading or unloading. Also a collision during the clamping process is not critical.

Version without bottom cover

Focusing on a short length, the bottom cover had been omitted. The piston contacts the bottom of the cartridge-type hole.

Swing direction

The units are available with clockwise and counterclockwise swing motion or without swing motion (0°) .

The swing angle can be limited by the insertion of distance plates (see page 2).

Wiper system

The standard FKM wiper has a high chemical resistance against most cooling and cutting fluids.

The optional metallic wiper protects the FKM wiper against mechanical damage due to big or hot swarf.

It consists of a radially floating wiping disk and a retaining disk.

The metallic wiper can be delivered already mounted ("M") or as an accessory for retrofitting (see page 4).

Attention!

The metallic wiper is not suitable for dry machining or minimum quantity lubrication. Also in applications with very little grinding swarf, the standard FKM wiper has a better protection effect.

If there is any danger that small particles stick to the piston rod, the metallic wiper disk can also be replaced by a hard plastic disk.

Indexing Metallic wiper optional

Position monitoring as accessory

Clamping arm complete with angle bracket (page 4).

Pneumatic position monitoring (page 5).

Important notes!

Swing clamps must only be used for clamping of workpieces in industrial applications and may only be operated with hydraulic oil.

They can generate very high forces. The workpiece, the fixture or the machine must be in the position to compensate these forces.

In the effective area of piston rod and clamping arm there is the danger of crushing. The manufacturer of the fixture or the machine

is obliged to provide effective protection devices.

The swing clamp has no overload protection device. When mounting the clamping arm, the clamping arm or the hexagon socket in the piston have to be backed up for tightening or untightening the fixing nut.

During loading and unloading of the fixture and during clamping a collision with the clamping arm has to be avoided.

Remedy: Mount position adaptor.

Operating conditions, tolerances and other data see data sheet A 0.100.

3 1.852

Dimensions Accessories

Swing angle

1. Swing angle 90° (standard)

	Part no.
90° cw	184X F <mark>090 R</mark> XX
90° ccw	184X F <mark>090 L</mark> XX
0°	184X F0000XX

2. Swing angle α < 90°

α = 15° to 75° $\,$ in gradation of 5° $\,$

By insertion of a distance plate the return stroke of the piston is reduced and thus the swing angle is reduced.

Clamping stroke and clamping position remain the same. The swing stroke and the dimensions h, m and x are reduced by y:

 $y = (90^{\circ} - \alpha^{\circ}) \star k$ (k see chart page 3)

Example	<u>):</u>
---------	-----------

Swing clamp Desired swing angle **Part no.**

1845 F<mark>045 L</mark>30

1845 F090 L30

45° ccw

Shortening: y = $(90^\circ - \alpha^\circ) * 0.12 \text{ mm/}^\circ = 5.4 \text{ mm}$

3. Swing angle > 90° Available on request!

2

Technical data

Max pulling force	[kN]	75	10.5	18.4	27.5
Effective clamping force	[kN]	1.0	see di	agram	2110
Clamping stroke	[mm]	12	12	15	15
Swing stroke	[mm]	11	12	15	21
Total stroke $\pm 0.4/-0.3$	[mm]	23	24	30	36
Min. operating pressure	[bar]	30	30	30	30
Max. flow rate	[Dui]	00	00	00	00
Clamping	[cm ³ /s]	10	14	32	57
Unclamping	[cm ³ /s]	20	28	60	110
Effective piston area		20	20	00	110
Clamping	[cm ²]	2.14	3.01	5.27	7.86
Unclamping	[cm2]	4 15	615	10.17	15 90
Oil volume/stroke	[cm3]	4.9	72	15.8	28.3
Oil volume/return stroke	[cm3]	9.6	14.8	30.5	57.2
Piston Ø	[mm]	23	28	36	45
	[mm]	33	40	50	57
	[mm]	43	54	67	77
C C	[mm]	23	27	25	32
Ød	[mm]	16	20	25	32
Ød1	[mm]	28	38	45	48
Ø d2	[mm]	33	42	54	54.5
e (fit denth)	[mm]	45	50	53	53
Øf	[mm]	27	30	36	40
a	[i i i i i j	M14 x 1.5	M18 x 1.5	M20 x 1.5	M28 x 1.5
$h \pm 0.4/-0.5$ / h max ¹)	[mm]	150 5 / 151 8	161 5 / 163 3	188 5 / 190 3	216 9 / 217 4
k	[mm/°]	0.091	0.093	0.12	0 152
$m + 0.4/-0.7^{2}$	[mm]	56.4	57.9	68.9	78.3
o1 min /max	[mm]	16/17	16/23	20/20	21/26
$o^2 \min /max$	[mm]	50/73	53/78	57/89	58/101
Øn	[mm]	66	85	10.5	13.0
	[mm]	13	10	14	16
p2	[]	M6	M8	M10	M12
Ør1	[mm]	35	42	52	63
Ør2	[mm]	36	44	55	65
s ±0.2	[mm]	73.3	78.3	89.3	101.3
t	[mm]	7.5	9	10	10
Ø u max.	[mm]	10	6	8	10
V	[mm]	25	25	29	34
v1 metallic wiper	[mm]	30	30	34	39
w min. [thickness of the bottom]	ĺmmĺ	14	16	16	20
$x + 0.3 - 0.2 / x max^{1}$	[mm]	78 / 79.2	84 / 85.8	100 / 101.6	116.5 /116.8
v min.	ĺmmĺ	8	9	10	12
Z	[mm]	20	20	24.4	28.4
Weight, approx.	[ka]	0.9	1.4	2.3	3.65
Part no.	1	0.0		2.0	0.00
Clockwise rotation 90°		1843 F090 R23M	1844 F090 R24 M	1845 F090 R30M	1846 F090 R36M
Counterclockwise rotation 90°		1843F090L23M	1844F090L24M	1845F090L30M	1846 F090 L36M
0 degree		1843F000023M	1844F000024M	1845 F000030M	1846 F000 036 M
0					

 $^{1\!\!0}$ h / x = upper edge piston $\,$ h max. / x max. = upper edge nut $^{2\!\!0}$ m = lower edge clamping arm

M = Option metallic wiper (see also page 1)

Effective clamping force with accessory clamping arm as a function of the oil pressure

* Clamping force for other lengths see page 4.

Accessories - Clamping arms • Metallic wipers Calculation of the flow rate • Calculation of the clamping force

Special clamping arm 1. Connecting dimensions

2. Admissible flow rate Q*

In the chart on page 3, the admissible flow rates for clamping and unclamping with the clamping arms (accessories) are specified. Longer special clamping arms have a higher torque of inertia. To avoid an overload of the swing mechanism, the flow rate has to be reduced:

2.1 Moments of inertia are known

$$Q_{L} = Q_{e} * \sqrt{\frac{J_{e}}{J_{L}}} \text{ cm}^{3}/\text{s}$$

 Q_1 = Flow rate with special clamping arm

 Q_{e}^{-} = Flow rate as per chart (page 3)

 J_{e} = Moment of inertia of the clamping arm (accessory) with contact bolt (chart)

J₁ = Moment of inertia special clamping arm

* Only for vertical mounting position!

Swing clamps		1843	1844	1845	1846
a	[mm]	58	75	93	120
b	ĮmmĮ	1/	22	26	32
C	[mm]	28	36	45	60
C1	ĮmmĮ	14	20	23	28
Ødt/	ĮmmĮ	16	20	25	32
Ød1 +0.1/+0.05	ĮmmĮ	15.8	19.8	24.8	31.8
e	ĮmmĮ	35	50	60	80
Ť	ĮmmĮ	16	16	22	26
g	ĮmmĮ	M14x1.5	M18x1.5	M20x1.5	M28x1.5
g1	[mm]	M8	M10	M12	M16
h min/max	ĮmmĮ	5/45	6/64	///0	9/85
Ø K +0.1	[mm]	3	3	3	3
1+0.5	ĮmmĮ	-9	10	10	10.5
m ±0.05	[mm]	7.8	9.8	12	15
n	ĮmmĮ	11	1/	20	20
0	[mm]	6	10	12	20
р	ĮmmĮ	22.5	27	32	39
q	[mm]	9	10	11	12.7
Ør	ĮmmĮ	20	24.5	31	34.5
S	ĮmmĮ	2.5	4	4	4.5
t	[mm]	11	17.5	19	19
u .	ĮmmĮ	17	18	21	19
V1	[mm]	6	(8	6
v2	ĮmmĮ	4	4	5	5
w1	[mm]	18	24	26	26
w2	[mm]	21	27	30	30
Part no. clamping arm					
 with contact bolt 		0354152	0354153	0354154	0354155
Weight, approx.	[kg]	0.19	0.39	0.69	1.43
Moment of inertia of J e	[kgm²]	0.00011	0.00046	0.0011	0.00398
- without thread g1		3548660	3548661	3548803	3548804
Weight, approx.	[kg]	0.16	0.34	0.62	1.28
Moment of inertia of J _e	[kgm²]	0.00007	0.00033	0.00084	0.00298
 complete with angle 		0354156	0354157	0354158	0354159
Angle bracket complete		0184003	0184004	0184005	0184005
Metallic wiper		0341104	0341107	0341105	0341100
Spare nut		3527 092	3527014	3527 099	3527015
lightening torque	[Nm]	16	30	42	90

Special clamping arm ᠿ

= 2

35 mm

2.2 Moments of inertia not known

This simplified calculation is only applicable for clamping arms of the above shape.

Example: Swing clamps 1843

 $L = 70 \, \text{mm}$

e = 35 mm as per above chart $Q = 10 \text{ cm}^3/\text{s}$ (as per chart page 3)

$$x L = 70 \text{ mm}$$

Extension factor
$$\frac{A}{e} = \frac{L}{e}$$

as per diagram \rightarrow y = 0.35

1.

3. Max. flow rate

$$Q_{L} = y * Q_{e} = 0.35 * 10 \text{ cm}^{3}/\text{s} = 3.5 \text{ cm}^{3}/\text{s}$$

4. Min. clamping time

as per diagram
$$\rightarrow$$
 approx. 1.4 s

Adm. flow rate and clamping time as a function of the clamping arm extension

Clamping force and admissible operating pressure

Effective clamping force (general)

$$\mathsf{F}_{\mathsf{Sp}} = \frac{\mathsf{p}}{\mathsf{A} + (\mathsf{B} \star \mathsf{L})} \le \mathsf{F}_{\mathsf{adm.}} \qquad [\mathsf{kN}]$$

$$F_{adm} = \frac{C}{L}$$
 [kN]

Admissible operating pressure

$$p_{adm} = \frac{D}{L} + E \le 350$$
 [bar]

A, B, C, D, E = constants as per chart

Constant	1843	1844	1845	1846
А	46.64	33.15	18.98	12.72
В	0.335	0.17	0.073	0.04
С	210	420	900	1760
D	9795	13926	17078	22386
E	70.26	71.33	65.44	70.36

$$F_{adm} = \frac{C}{L} = \frac{210}{70} = 3 \text{ kN}$$

2. Admissible operating pressure

 $p_{adm} = \frac{D}{L} + E = \frac{9795}{70} + 70.26 = 210 \text{ bar}$

Römheld GmbH

Application

The pneumatic position monitoring signals the following conditions by closing two bore holes:

Clamping arm in clamping position and piston in clamping area

By the pressure increase in the pneumatic line an electro-pneumatic pressure switch or a differential pressure switch can be actuated. These electrical switching devices are integrated in the electric control so that on the clamping fixture no electricity is required.

Description

The control bolt is fitted with small clearance into the housing and is maintained by spring force in the off-position.

All components are made of stainless steel. The pneumatic is preferably supplied and removed through drilled channels; this offers an optimum swarf protection.

Optionally, also pneumatic hoses NW2 can be connected.

Monitoring by pneumatic pressure switch

For the evaluation of the pressure built-up standard electro-pneumatic pressure switches can be used.

It is possible to monitor up to 8 position monitorings connected in series (see circuit diagram).

Please note!

Functioning of the pneumatic position monitorings is only process-safe, if the air quantity <u>and</u> the system pressure are throttled. The nominal values are indicated below technical data.

Technical data

Connection	t	O-ring o hread M3
Nominal diameter	[mm]	2
Max. air pressure	[bar]	10
Range of operating pressure	[bar]	35
Differential pressure*) at		
3 bar system pressure	[bar]	min. 1.5
5 bar system pressure	[bar]	min. 3
Air flow rate **)	[l/min]	1020
Actuating force ***)	[N/bar]	2.8
+ Spring force	[N]	6.513
Plunger stroke	[mm]	max 10

- *) Pressure drop when controlling the function "Clamped", if one or several position monitorings are not operated.
- ****)** For measuring the air flow rate appropriate devices are available.

Please contact us. *****)**Port A closed.

E = Input

Part no. 3000274 (included in the delivery)

Switching range 2 ÷ 9 mm

Switching range 2 ÷ 10 mm Transition range Clamped 1

0 2 9 Valve stroke 10 Swing stroke Clamping stroke 0 = Passage 1 = Closed

Part no. 0353937

Accessories

Insertion nipple fitting M3 **Part no.**

Mounting example

Attention! Piston extended (unclamped) but clamping arm shown in clamping position.

Connecting scheme

2 connecting bores max. Ø 2.8

Pneumatic port

Drilled channels

The position monitoring is fixed to the above connecting scheme with inserted O-rings. With the indicated distance dimensions the position monitoring is directly located at the flange of the swing clamp and has thus

position monitoring is directly located at the flange of the swing clamp and has thus the correct distance for the operation of the clamping arm.

Hose connection

Remove the plugs M3 and screw-in the insertion nipple fitting M5 (accessory). The O-rings remain inserted for sealing at the flange-mounting surface.

Important notes

When adjusting the control cam it has to be considered that the control bolt will only be operated after completion of the swing stroke. Within the clamping range the control bolt should have a stroke reserve of approx. 1 mm also for idle strokes (without workpiece) to avoid mechanical damage.

Throttling of the flow rate

A flow rate throttling always has to be effected in the supply line to the swing clamp. This avoids a pressure intensification and thereby pressures exceeding 350 bar.

5

3890188